Nature-Inspired Biomineralization Strategies
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Background

Rare Earth Elements are ubiquitous in modern technology and with
the electrification of our economy, demand is increasing. In 2022,
$160 million of REEs were imported to the United States.
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REEs are in our phones, cameras, cars, and more!

China controls up to 95% of REE extraction and refinement.?

Directed Evolution with Silicatein

Recombinant expression of silicatein in E. coli requires the addition
of a protein fusion tag to support protein solubility. Here, we seek
to increase solubility, stability, and enzyme kinetics via directed
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To take advantage of the remaining
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Left: Nickel affinity chromatography for purified silicatein fusions 2) eGFP-silicatein anticipated MW 50 kDa, 3) TF-silicatein
anticipated MW 75 kDa. Significant band at 26 kDa in lane 2 has been identified as DnaK chaperone protein. Figure from ref. 5.
Middle: SDS PAGE with whole cell lysate library samples, including WT TF-sil, 2.4, 2.6, 2.7, 2.8, 3.1, 3.2, 3.3, and 3.4. Anticipated
molecular weight of TF-silicatein and mutants is 75 kDa, indicated by red arrow. Anticipated molecular weight of DnaK chaperone

for effective REE extraction.
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Mountain Pass Mine, California.

protein is 26 kDa indicated by blue arrow. Figure from ref. 7. Right: Immunoblot with library whole cell lysate samples WT TF-
silcation, 2.6, 2.7, 2.8. WT TF-silicatein dilutions are shown compared to 1x of mutants 2.6, 2.7, and 2.8. Figure from ref. 6.

Ceria Mineralization Secondary screening of library mutants shows
8- significantly greater ceria mineralization with

Image from ref. 2. Production (grey, thousands of tons) and reserves (blue, millions of

tons) of REE worldwide. Figure adapted from ref. 3.

low efficiency.

REE Extraction with Synthetic Biology

Rare Earth Elements are difficult to identify and extract.
f & B Mining can only identify large REE deposits and yields
Eans - hazardous waste streams. Smaller amounts can only be
E identified with specialized techniques such as inductively
coupled plasma optical emission spectrometry.
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Acid mine drainage. Image from ref. 2.

With synthetic biology and protein engineering we can target trace
amounts of REEs.

Silicatein is an enzyme found in marine sponges that mineralizes free silica
species into stable silica oxide, and other inorganic ions to stable oxides.
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Biomineralization Recovery

Ceria Silica
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1 mutant 2.6. This is in stark contrast with the
immunoblot results suggesting that each mutant

4 . has much less expression than the WT, despite all

: * samples normalized by total protein concentration
2- T within lysate. Presumably, the sequence of mutant
0- 2.6 confers greater biomineralization activity than
WT 212224262728 2931323334 the WT. Mutants 2.6, 2.7, and 2.8 were sequenced

repeatedly, however results varied each time,

;':'(fjﬂec';‘;']”o‘]ﬁv\t‘ﬂe E:llr:y:;e;e normalized dtgy”tftal which is consistent with multiple mutant proteins

protein concentration. Two-way ANOVA, n > 2, *** bejng co-expressed within the same sample.
P<0.001. Figure from ref. 6.

Normalized Yield

Ceria mineralization of wild-type and mutant TF-

Directed evolution with recombinant silicatein
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properties. “X” refers to non-specific amino acid. Sequence alignments
prepared with EMBL-EBI 2022. Figure adapted from ref. 6.

In vitro biomineralization with cerium, lanthanum, and neodymium
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Expected and alternative outcomes of the experimental
procedure surrounding directed evolution with
recombinant silicatein are shown. The three potential
outcomes following interative clone isolation are shown,
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Collaboration with USAFA

Cyanobacteria can grow and thrive on Mars. Furthermore, cyanobacteria can function
as a food source for E. coli or for oxygen generation in life support systems.”? Here, we
explore silicatein genetic engineering in cyanobacteria and microbially induced calcite
precipitation combined with biosilicification for in situ resource utilization. This work
relies on cyanobacterial expertise and infrastructure at USAFA, in addition to targeting

space applications of DoD interest.
eGFP-silicatein expression in S. elongatus PCC 7942

Cyanobacteria consume CO, via photosynthesis. Expression of

silicatein in cyanobacteria could provide carbon-negative
biomineralization activity. Furthermore, utilizing cyanobacteria
for recombinant protein expression includes the added benefit
of post-translational modifications, which occur in marine
sponges, but not in E. coli. We are also pursuing silicatein
expression in S. elongatus UTEX 2973 and Anabaena PCC 7120.

Biosilicification to enhance biocementation in austere environments

| Biocementation with microbially induced calcite precipitation by S.
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Martian regolith as seen by NASA
Curiosity rover.
Image source: NASA
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' Here, we surface display silicatein S. pasteurii S. Pasteurii  E. coli INP-sil

S. pasteurii has significant urease activity. on E. coli for in vivo use with bricks +E. coli INP-sil

Preliminary experiments show that S. pasteurii sand-based bricks can withstand
approximately 140 Ibs of pressure. In future experiments, the mechanical strength of
bricks treated with silicatein will be evaluated.

 Leadership, Mentorship, and Educational Benefits

T Women in STEM

* Understanding the role of biotechnology
and research in defense strategies

DoD research with
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The results of this collaborative research with USAFA and AFRL are expected to lead to a joint
publication in a peer-reviewed journal, with a manuscript under preparation for Frontiers special
issue: “Systems Microbiology in Biomanufacturing, and Industrial Scale-Up”

Future and Ongoing Work

* Evaluate in vivo biomineralization with INP-silicatein for mine and e-waste water applications.

* Explore cyanobacterial silicatein expression (both internal and surface-displayed) for biomineralization activity
and carbon sequestration.

* Examine S. pasteurii and E. coli INP-silicatein biocementation bricks for mechanical and optical strength, including
evaluation of UV degradation. Strategize for applications in austere environments.

* Assess the potential for silicatein biomineralization in REE extraction in space.

* |dentify alternative biomineralization players for critical mineral extraction.
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